蒙特卡羅方法
通过概率论,蒙特卡罗可以用作数值积分法。 例如,
其中p(x)是U(0;1)的概率密度函数。
实践中,蒙特卡罗广泛应用于统计力学,量子物理学,金融衍生产品定价和风险管理。
##一个MC示例:期权定价
蒙特卡洛通常用于评估期权价格。
我们不会涉及任何理论推论。 对于欧式看涨期权,其价格可以通过公式给出
其中S为当前基本股票价格,σ为股票波动率,r为利率,T为期权期权,K为行使价,Φ为标准正态随机变量。
那我假設是有一定規律性的
本周我們介紹股市波動最基本的特性: 對數常態分配(Log-normal Distribution)。有接觸過財務工程的投資朋友可能都聽過這個名詞,因為...
教科書說,股市的漲跌幅,呈現對數常態分配。
這個觀察是奧斯本(Matthew Maury Osborne,1916~2003)發現的。然而,這個現象並不那麼直觀! 我們介紹如下:
這邊也符合對數常態分配,在99%的信心水平下,統二的股票一年後的價格不會低於64塊ㄏㄏ,風險值有35%,掉那麼快也倒了,或許是我用錯了?參考那網站是好像是用正規常態,我是用對數或許有些關聯。
這是模擬五萬次蒙特卡羅(好像沒什麼意義xd。
程式碼
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import scipy.stats as scs | |
S0 = 100 | |
r = 0.05 | |
sigma = 0.25 | |
T = 1.0 | |
I = 50000 | |
M = 50 | |
dt = T/M | |
S = np.zeros((M + 1,I)) | |
S[0] = S0 | |
print (S[0]) | |
for t in range(1,M+1): | |
S[t] = S[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*np.sqrt(dt)*np.random.standard_normal(I)) | |
print (t) | |
print (M+1) | |
plt.figure(figsize=(16,8)) | |
#define q as the 1% empirical qunatile, this basically means that 99% of the values should fall between here | |
q = np.percentile(S, 1) | |
# Plot a line at the 1% quantile result | |
plt.axvline(x=q, linewidth=4, color='r') | |
# Starting Price | |
plt.figtext(0.6, 0.8, s="Start price: $%.2f" %S0 ) | |
# Mean ending price | |
plt.figtext(0.6, 0.7, "Mean final price: $%.2f" % S.mean()) | |
# Variance of the price (within 99% confidence interval) | |
plt.figtext(0.6, 0.6, "VaR(0.99): $%.2f" % (S0 - q,)) | |
# Display 1% quantile | |
plt.figtext(0.15, 0.6, "q(0.99): $%.2f" % q) | |
plt.hist(S[-1],bins = 50) | |
plt.xlabel('price') | |
plt.ylabel('frequency') | |
plt.show() | |
plt.figure(figsize=(16,8)) | |
plt.plot(S[:,:],lw = 1.5) | |
plt.xlabel('time') | |
plt.ylabel('price') | |
plt.show() |
增加動畫
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import scipy.stats as scs | |
from matplotlib import animation | |
S0 = 100 | |
r = 0.05 | |
sigma = 0.25 | |
T = 1.0 | |
I = 10 | |
M = 50 | |
dt = T/M | |
S = np.zeros((M + 1,I)) | |
S[0] = S0 | |
print (S[0]) | |
for t in range(1,M+1): | |
S[t] = S[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*np.sqrt(dt)*np.random.standard_normal(I)) | |
print (t) | |
print (M+1) | |
plt.figure(figsize=(16,8)) | |
#define q as the 1% empirical qunatile, this basically means that 99% of the values should fall between here | |
q = np.percentile(S, 1) | |
# Plot a line at the 1% quantile result | |
plt.axvline(x=q, linewidth=4, color='r') | |
# Starting Price | |
plt.figtext(0.6, 0.8, s="Start price: $%.2f" %S0 ) | |
# Mean ending price | |
plt.figtext(0.6, 0.7, "Mean final price: $%.2f" % S.mean()) | |
# Variance of the price (within 99% confidence interval) | |
plt.figtext(0.6, 0.6, "VaR(0.99): $%.2f" % (S0 - q,)) | |
# Display 1% quantile | |
plt.figtext(0.15, 0.6, "q(0.99): $%.2f" % q) | |
plt.hist(S[-1],bins = 50) | |
plt.xlabel('price') | |
plt.ylabel('frequency') | |
#plt.show() | |
plt.figure(figsize=(16,8)) | |
fig, ax = plt.subplots() | |
global test | |
fig = plt.figure() | |
ax1 = fig.add_subplot(1,1,1) | |
#graph_data = open('example.txt','r').read() | |
#lines = graph_data.split('\n') | |
xs = [] | |
ys = [] | |
for line in range (0,I ,1): | |
xs.append(line) | |
test =0 | |
def animate(i): | |
global test | |
if(test < I): | |
#ax1.plot(xs[:test], ys[ :test]) | |
#ax1.clear() | |
for y in range (0,M ,1): | |
ax1.plot(S[:test,:]) | |
test= test +1 | |
ani = animation.FuncAnimation(fig, animate, frames=100, interval=20, | |
blit=False) | |
#plt.show() | |
ani.save('/animation.gif', writer='imagemagick', fps=60) |