回測一波
這次小研究可能要探討,中短期的技術指標,我想假設15天到30天採用不同的技術主標結算後,假設報酬率,不是最高的則,退回尋找最高回傳的報酬率,這段時間並輸出這段時間的,DATA可以詳細分析這段時間到底出了什麼事資料量越多或許可以結合ai作權重的提升,讓程式在適當的時機做出勝率最高的判斷,我想ai大概是這樣吧?!,這是下一次的目標
改得也不錯吧!?,樓下xq操盤高手
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 20 17:46:15 2017
@author: user
"""
import numpy as np
import pandas as pd
import csv
import talib
import os
import time
import matplotlib.pyplot as plt
from mpl_finance import candlestick_ohlc
import matplotlib.dates as dates
from datetime import datetime
data_list = []
num_48 = ["1216統一"]
df=pd.DataFrame()
df2=pd.DataFrame(num_48)
for iii in num_48:
str=os.path.join("C:\\","Users","x2132","OneDrive","桌面","History_data",iii)
str=str+'.csv'
print (str)
#收盤
with open(str,'r') as c:
reader=csv.DictReader(c)
c=[row["收盤"] for row in reader] #要導入的列
#開盤
with open(str,'r') as o:
reader=csv.DictReader(o)
o=[row["開盤"] for row in reader] #要導入的列
#最高
with open(str,'r') as h:
reader=csv.DictReader(h)
h=[row["最高"] for row in reader] #要導入的列
#最低
with open(str,'r') as l:
reader=csv.DictReader(l)
l=[row["最低"] for row in reader] #要導入的列
#日期
with open(str,'r') as d:
reader=csv.DictReader(d)
d=[row["日期"] for row in reader] #要導入的列
ope = [float(x) for x in o]
close = [float(x) for x in c]
high = [float(x) for x in h]
low = [float(x) for x in l]
date =d
for x in range(0,len(ope),1):
#datess =dates.date2num(d[x])
#print (datetime.datetime(2017, 3, 13))
#print (dates.date2num(datetime.datetime(2017, 3, 13, 12, 0)))
#print (datetime.datetime(2017, 3, 13, 12, 0))
t = d[x].replace('/','-')
#print ((dates.date2num(datetime.strptime(t, '%Y-%m-%d'))))
# (type(datetime.datetime(2017, 3, 13, 12, 0)))
#print (type(dates.date2num(datetime.datetime(2017, 3, 13, 12, 0))))
#print(dates.date2num(datetime.datetime(2017, 3, 13, 12, 0)))
datas = (dates.date2num(datetime.strptime(t, '%Y-%m-%d')) , ope[x], high[x], low[x],close[x])
data_list.append(datas)
date.reverse()
low.reverse()
high.reverse()
close.reverse()
ope.reverse()
#技術指標
def get_MACD():
MACD = talib.MACD(np.array(close),
fastperiod=12, slowperiod=26, signalperiod=9)
return [float(x) for x in MACD [1]]
def get_DIF(test):
EMA12=talib.EMA(np.array(close), timeperiod=12)
EMA26=talib.EMA(np.array(close), timeperiod=26)
for tmp in range(0,len(EMA12)):
test.append(float(EMA12[tmp]-EMA26[tmp]))
DIF=[]
TRUE_MACD=get_MACD()
get_DIF(DIF)
#交易策略
win=[]
win_con=[0]
los_con=[0]
buy_data=[]
self_data=[]
buy_date=[]
self_date=[]
star=10000000 #一開始的錢
price=10000000
handle=0 #持有股數
ex_handle=1 #持有股數上限
re_handle=0 #實際持有
for tmp in range(12,len(DIF)):
if(tmp+1<len(DIF)):
if(DIF[tmp]>TRUE_MACD[tmp] and price >= (ex_handle*close[tmp]*1000) ):
handle= handle+ex_handle*1000
re_handle=re_handle+ex_handle
fin_price=price-(ex_handle*ope[tmp+1])*1000 #1=1000
print ('買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
str='買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle
buy_data.append(str)
elif (DIF[tmp]<TRUE_MACD[tmp] and re_handle >=1 ):
fin_price=price+(re_handle*close[tmp])*1000
handle=0
re_handle=0
print ('賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
str='賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle
self_data.append(str)
if (handle>0):#強制平倉
fin_price+= (close[len(close)-1]*handle)
handle=0
re_handle=0
print ('強制平倉 賣出日期',date[len(close)-1],'收盤價',close[len(close)-1],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
#回測績效 - 交易次數
count=0
loss=0
for a,b in zip (buy_data[:],self_data[:]):
buy_date.append(a[3])
self_date.append(b[3])
if buy_date[0]<self_date[0]:
count+=1
else:
loss+=1
del buy_date[0]
del self_date[0]
for a,b in zip (buy_data[:],self_data[:]):
buy_date.append(a[3])
self_date.append(b[3])
if len(buy_date)>0:
z=(self_date[0]-buy_date[0])/buy_date[0]
if z>0:
win_con.append(z)
elif z<0:
los_con.append(z)
del buy_date[0]
del self_date[0]
for tmp in buy_data:
print (tmp)
for tmp in self_data:
print (tmp)
wp=int(fin_price-star)
buy=len(buy_data)
sel=len(self_data)
total_trade=sum((len(buy_data),len(self_data)))
win_rate=round(count/sum((len(buy_data),len(self_data)))*100,2)
retur=round(((fin_price-star)/star)*100,2)
ave_retur=round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4)
win_num=count
los_num=loss
max_win=round(max(win_con),2)
min_los=round(min(los_con),2)
data={"獲利金額":[wp],"買次數":[buy],"賣次數":[sel],"總交易次數":[total_trade],"勝率":[win_rate],"報酬率":[retur],"平均報酬率":[ave_retur],"獲利次數":[win_num],"虧損次數":[los_num],"最大獲利率":[max_win],"最大虧損率":[min_los]}
df=df.append(pd.DataFrame(data),ignore_index=True)
df.insert(0,'股票代號',df2)
df.to_csv("MACD.KPI.csv")
print ('獲利金額:',(int(fin_price-star)))
print ('交易次數 買/賣:',len(buy_data),'/',len(self_data))
print ('總交易次數:',sum((len(buy_data),len(self_data))))
print ('勝率:%5.2f'%(count/sum((len(buy_data),len(self_data)))*100),"%")
print ('報酬率:',round(((fin_price-star)/star)*100,2))
print ('報酬率:%5.2f'%(((fin_price-star)/star)*100),"%")
print ('平均報酬率',round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4),"%")
print("獲勝次數:",count)
print("虧損次數:",loss)
print("最大獲利率:",round(max(win_con),2),"%")
print("最大虧損率:",round(min(los_con),2),"%")
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
# 设置X轴刻度为日期时间
ax.xaxis_date()
plt.xticks(rotation=45)
plt.yticks()
plt.title("k線圖")
plt.xlabel("時間")
plt.ylabel("股價")
print (len(data_list))
candlestick_ohlc(ax, data_list[:], width=0.6, colorup='r', colordown='g')
print('hello')
plt.grid()
plt.show()
print (data_list)
這次小研究可能要探討,中短期的技術指標,我想假設15天到30天採用不同的技術主標結算後,假設報酬率,不是最高的則,退回尋找最高回傳的報酬率,這段時間並輸出這段時間的,DATA可以詳細分析這段時間到底出了什麼事資料量越多或許可以結合ai作權重的提升,讓程式在適當的時機做出勝率最高的判斷,我想ai大概是這樣吧?!,這是下一次的目標
改得也不錯吧!?,樓下xq操盤高手
改得也不錯吧!?,樓下xq操盤高手
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Dec 20 17:46:15 2017 | |
@author: user | |
""" | |
import numpy as np | |
import pandas as pd | |
import csv | |
import talib | |
import os | |
import time | |
import matplotlib.pyplot as plt | |
from mpl_finance import candlestick_ohlc | |
import matplotlib.dates as dates | |
from datetime import datetime | |
data_list = [] | |
num_48 = ["1216統一"] | |
df=pd.DataFrame() | |
df2=pd.DataFrame(num_48) | |
for iii in num_48: | |
str=os.path.join("C:\\","Users","x2132","OneDrive","桌面","History_data",iii) | |
str=str+'.csv' | |
print (str) | |
#收盤 | |
with open(str,'r') as c: | |
reader=csv.DictReader(c) | |
c=[row["收盤"] for row in reader] #要導入的列 | |
#開盤 | |
with open(str,'r') as o: | |
reader=csv.DictReader(o) | |
o=[row["開盤"] for row in reader] #要導入的列 | |
#最高 | |
with open(str,'r') as h: | |
reader=csv.DictReader(h) | |
h=[row["最高"] for row in reader] #要導入的列 | |
#最低 | |
with open(str,'r') as l: | |
reader=csv.DictReader(l) | |
l=[row["最低"] for row in reader] #要導入的列 | |
#日期 | |
with open(str,'r') as d: | |
reader=csv.DictReader(d) | |
d=[row["日期"] for row in reader] #要導入的列 | |
ope = [float(x) for x in o] | |
close = [float(x) for x in c] | |
high = [float(x) for x in h] | |
low = [float(x) for x in l] | |
date =d | |
for x in range(0,len(ope),1): | |
#datess =dates.date2num(d[x]) | |
#print (datetime.datetime(2017, 3, 13)) | |
#print (dates.date2num(datetime.datetime(2017, 3, 13, 12, 0))) | |
#print (datetime.datetime(2017, 3, 13, 12, 0)) | |
t = d[x].replace('/','-') | |
#print ((dates.date2num(datetime.strptime(t, '%Y-%m-%d')))) | |
# (type(datetime.datetime(2017, 3, 13, 12, 0))) | |
#print (type(dates.date2num(datetime.datetime(2017, 3, 13, 12, 0)))) | |
#print(dates.date2num(datetime.datetime(2017, 3, 13, 12, 0))) | |
datas = (dates.date2num(datetime.strptime(t, '%Y-%m-%d')) , ope[x], high[x], low[x],close[x]) | |
data_list.append(datas) | |
date.reverse() | |
low.reverse() | |
high.reverse() | |
close.reverse() | |
ope.reverse() | |
#技術指標 | |
def get_MACD(): | |
MACD = talib.MACD(np.array(close), | |
fastperiod=12, slowperiod=26, signalperiod=9) | |
return [float(x) for x in MACD [1]] | |
def get_DIF(test): | |
EMA12=talib.EMA(np.array(close), timeperiod=12) | |
EMA26=talib.EMA(np.array(close), timeperiod=26) | |
for tmp in range(0,len(EMA12)): | |
test.append(float(EMA12[tmp]-EMA26[tmp])) | |
DIF=[] | |
TRUE_MACD=get_MACD() | |
get_DIF(DIF) | |
#交易策略 | |
win=[] | |
win_con=[0] | |
los_con=[0] | |
buy_data=[] | |
self_data=[] | |
buy_date=[] | |
self_date=[] | |
star=10000000 #一開始的錢 | |
price=10000000 | |
handle=0 #持有股數 | |
ex_handle=1 #持有股數上限 | |
re_handle=0 #實際持有 | |
for tmp in range(12,len(DIF)): | |
if(tmp+1<len(DIF)): | |
if(DIF[tmp]>TRUE_MACD[tmp] and price >= (ex_handle*close[tmp]*1000) ): | |
handle= handle+ex_handle*1000 | |
re_handle=re_handle+ex_handle | |
fin_price=price-(ex_handle*ope[tmp+1])*1000 #1=1000 | |
print ('買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle) | |
str='買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle | |
buy_data.append(str) | |
elif (DIF[tmp]<TRUE_MACD[tmp] and re_handle >=1 ): | |
fin_price=price+(re_handle*close[tmp])*1000 | |
handle=0 | |
re_handle=0 | |
print ('賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle) | |
str='賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle | |
self_data.append(str) | |
if (handle>0):#強制平倉 | |
fin_price+= (close[len(close)-1]*handle) | |
handle=0 | |
re_handle=0 | |
print ('強制平倉 賣出日期',date[len(close)-1],'收盤價',close[len(close)-1],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle) | |
#回測績效 - 交易次數 | |
count=0 | |
loss=0 | |
for a,b in zip (buy_data[:],self_data[:]): | |
buy_date.append(a[3]) | |
self_date.append(b[3]) | |
if buy_date[0]<self_date[0]: | |
count+=1 | |
else: | |
loss+=1 | |
del buy_date[0] | |
del self_date[0] | |
for a,b in zip (buy_data[:],self_data[:]): | |
buy_date.append(a[3]) | |
self_date.append(b[3]) | |
if len(buy_date)>0: | |
z=(self_date[0]-buy_date[0])/buy_date[0] | |
if z>0: | |
win_con.append(z) | |
elif z<0: | |
los_con.append(z) | |
del buy_date[0] | |
del self_date[0] | |
for tmp in buy_data: | |
print (tmp) | |
for tmp in self_data: | |
print (tmp) | |
wp=int(fin_price-star) | |
buy=len(buy_data) | |
sel=len(self_data) | |
total_trade=sum((len(buy_data),len(self_data))) | |
win_rate=round(count/sum((len(buy_data),len(self_data)))*100,2) | |
retur=round(((fin_price-star)/star)*100,2) | |
ave_retur=round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4) | |
win_num=count | |
los_num=loss | |
max_win=round(max(win_con),2) | |
min_los=round(min(los_con),2) | |
data={"獲利金額":[wp],"買次數":[buy],"賣次數":[sel],"總交易次數":[total_trade],"勝率":[win_rate],"報酬率":[retur],"平均報酬率":[ave_retur],"獲利次數":[win_num],"虧損次數":[los_num],"最大獲利率":[max_win],"最大虧損率":[min_los]} | |
df=df.append(pd.DataFrame(data),ignore_index=True) | |
df.insert(0,'股票代號',df2) | |
df.to_csv("MACD.KPI.csv") | |
print ('獲利金額:',(int(fin_price-star))) | |
print ('交易次數 買/賣:',len(buy_data),'/',len(self_data)) | |
print ('總交易次數:',sum((len(buy_data),len(self_data)))) | |
print ('勝率:%5.2f'%(count/sum((len(buy_data),len(self_data)))*100),"%") | |
print ('報酬率:',round(((fin_price-star)/star)*100,2)) | |
print ('報酬率:%5.2f'%(((fin_price-star)/star)*100),"%") | |
print ('平均報酬率',round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4),"%") | |
print("獲勝次數:",count) | |
print("虧損次數:",loss) | |
print("最大獲利率:",round(max(win_con),2),"%") | |
print("最大虧損率:",round(min(los_con),2),"%") | |
fig, ax = plt.subplots() | |
fig.subplots_adjust(bottom=0.2) | |
# 设置X轴刻度为日期时间 | |
ax.xaxis_date() | |
plt.xticks(rotation=45) | |
plt.yticks() | |
plt.title("k線圖") | |
plt.xlabel("時間") | |
plt.ylabel("股價") | |
print (len(data_list)) | |
candlestick_ohlc(ax, data_list[:], width=0.6, colorup='r', colordown='g') | |
print('hello') | |
plt.grid() | |
plt.show() | |
print (data_list) |