Sunday, June 24, 2018

Python股票回測

Python股票回測


技術指標寫好後,如何測試績效呢?當然是寫個技術指標來跑回測,當然遇上重大事件再配合
機器學習或AI恩???

Stock_backing.py(應該是這樣拼xd


# -*- coding: utf-8 -*-
"""
Created on Sat Dec 23 17:48:25 2017
@author: user
"""
import csv
import os
import pandas as pd
import talib
import numpy as np
num_48 = ["1216統一","1301台塑","1303南亞","1326台化","1402遠東新","2002中鋼","2015正新","2207和泰車","2301光寶科","2308台達電","2311日月光","2317鴻海","2324仁寶","2325矽品","2330台積電","2354鴻準","2357華碩","2382廣達","2395研華","2408南亞科","2409友達","2454聯發科","2474可成","2823中壽","2880華南金","2885元大金","2886兆豐金","2891中信金","2892第一金","2912統一超","3045台灣大","3481群創","4938和碩","5880合庫金","6505台塑化"]
df=pd.DataFrame()
df2=pd.DataFrame(num_48)
for iii in num_48:
str=os.path.join("C:\\","Users","YUMI","Desktop","History_data",iii)
str=str+'.csv'
print (str)
with open(str,'r') as o:
reader=csv.DictReader(o)
o=[row["開盤"] for row in reader] #要導入的列
with open(str,'r') as c:
reader=csv.DictReader(c)
c=[row["收盤"] for row in reader] #要導入的列
with open(str,'r') as h:
reader=csv.DictReader(h)
h=[row["最高"] for row in reader] #要導入的列
with open(str,'r') as l:
reader=csv.DictReader(l)
l=[row["最低"] for row in reader] #要導入的列
with open(str,'r') as d:
reader=csv.DictReader(d)
d=[row["日期"] for row in reader]
ope = [float(x) for x in o]
close = [float(x) for x in c]
high = [float(x) for x in h]
low = [float(x) for x in l]
date =d
#島狀反轉 黑K跳空紅K跳空紅K
SMA = talib.MA(np.array(close), timeperiod=10, matype=0)
#交易策略
win=[]
win_con=[0]
los_con=[0]
buy_data=[]
self_data=[]
buy_date=[]
self_date=[]
star=10000000 #一開始的錢
price=10000000
handle=0 #持有股數
ex_handle=1 #持有股數上限
re_handle=0 #實際持有
cb=[]#收盤容器,close box
ob=[]#開盤容器,open box
hb=[]#最高價容器,high box
lb=[]#最低價容器,low box
for tmp in range(10,len(ope)):
if(tmp+1<len(ope)):
cb.append(close[tmp])
ob.append(ope[tmp])
hb.append(high[tmp])
lb.append(low[tmp])
if len(cb)==4 and len(ob)==4 and len(hb)==4 and len(lb)==4:
#print('收盤',cb)
#print('開盤',ob)
#print('最高',hb)
# print('最低',lb)
if cb[1]>cb[2]>cb[3] and ob[1]>ob[2]>ob[3] and cb[3]>ob[2] and cb[2]>ob[1]:
handle= handle+ex_handle*1000
re_handle=re_handle+ex_handle
fin_price=price-(ex_handle*ope[tmp+1])*1000 #1=1000
print('買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
str='買進日期',date[tmp+1],'開盤價',ope[tmp+1],'支出',(ex_handle*ope[tmp+1])*1000,'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle
buy_data.append(str)
else:
if(handle >0):
if close[tmp]<SMA[tmp]:
fin_price=price+(re_handle*close[tmp])*1000
handle=0
re_handle=0
print('賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
str='賣出日期',date[tmp],'收盤價',close[tmp],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle
self_data.append(str)
del ob[0]
del cb[0]
del hb[0]
del lb[0]
if (handle>0):#強制平倉
fin_price+= (close[len(close)-1]*handle)
handle=0
re_handle=0
print ('強制平倉 賣出日期',date[len(close)-1],'收盤價',close[len(close)-1],'結算金額',fin_price,'持有股數',handle,'持有張數',re_handle)
del ope[tmp]
del close[tmp]
#回測績效 - 交易次數
count=0
loss=0
for a,b in zip (buy_data[:],self_data[:]):
buy_date.append(a[3])
self_date.append(b[3])
if buy_date[0]<self_date[0]:
count+=1
else:
loss+=1
del buy_date[0]
del self_date[0]
for a,b in zip (buy_data[:],self_data[:]):
buy_date.append(a[3])
self_date.append(b[3])
if len(buy_date)>0:
z=(self_date[0]-buy_date[0])/buy_date[0]
if z>0:
win_con.append(z)
elif z<0:
los_con.append(z)
del buy_date[0]
del self_date[0]
for tmp in buy_data:
print (tmp)
for tmp in self_data:
print (tmp)
wp=int(fin_price-star)
buy=len(buy_data)
sel=len(self_data)
total_trade=sum((len(buy_data),len(self_data)))
win_rate=round(count/sum((len(buy_data),len(self_data)))*100,2)
retur=round(((fin_price-star)/star)*100,2)
ave_retur=round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4)
win_num=count
los_num=loss
max_win=round(max(win_con),2)
min_los=round(min(los_con),2)
# data={"獲利金額":[wp],"買次數":[buy],"賣次數":[sel],"總交易次數":[total_trade],"勝率":[win_rate],"報酬率":[retur],"平均報酬率":[ave_retur],"獲利次數":[win_num],"虧損次數":[los_num],"最大獲利率":[max_win],"最大虧損率":[min_los]}
# df=df.append(pd.DataFrame(data),ignore_index=True)
#df.insert(0,'股票代號',df2)
#df.to_csv("紅三兵.KPI.csv")
print ('獲利金額:',(int(fin_price-star)))
print ('交易次數 買/賣:',len(buy_data),'/',len(self_data))
print ('總交易次數:',sum((len(buy_data),len(self_data))))
print ('勝率:%5.2f'%(count/sum((len(buy_data),len(self_data)))*100),"%")
#print ('報酬率:',round(((fin_price-star)/star)*100,2))
print ('報酬率:%5.2f'%(((fin_price-star)/star)*100),"%")
print ('平均報酬率',round((((fin_price-star)/star))/(sum((len(buy_data),len(self_data))))*100,4),"%")
print("獲勝次數:",count)
print("虧損次數:",loss)
print("最大獲利率:",round(max(win_con),2),"%")
print("最大虧損率:",round(min(los_con),2),"%")
# data=[]
# for x in range(0,20):
# for y in range (x,x+20):
# data.append(buy(y))
# print(data)
#print ('最大獲利率',max())
#回測績效 - ROI
#roi = 0
#winrate = 0
#def roical(star, price, winrate):
# roi = ((star - price) / price)
# if roi > 0:
# winrate+=1
# return roi, winrate
#ROI,win=roical(star, price, winrate)
#print (round((ROI*10),2))
#print (round((win),2))
##
##
##
##
view raw stock_back.py hosted with ❤ by GitHub