Saturday, March 31, 2018

隨機亂爬山之旗尾山


有登山社帶路诶 走伊波。





有些路段真的危險啊

Android Update Photo php

我們來上傳檔案


對一次的專案內容我們透過@來分類和創建資料夾分類範例

package com.example.x2132.myapplication;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
public class FileUpload {
private String mResponseMsg;
private boolean isSucess;
public interface OnFileUploadListener{
void onFileUploadSuccess(String msg);
void onFileUploadFail(String msg);
}
private OnFileUploadListener mOnFileUploadListener;
public void setOnFileUploadListener(OnFileUploadListener listener){
mOnFileUploadListener = listener;
}
public boolean isSucess() {
return isSucess;
}
public FileUpload(){
mResponseMsg = "";
isSucess = false;
}
public void doFileUpload(String path,String filename) {
HttpURLConnection conn = null;
DataOutputStream dos = null;
DataInputStream inStream = null;
String existingFileName = path;
String lineEnd = "\r\n";
String twoHyphens = "--";
String boundary = "*****";
int bytesRead, bytesAvailable, bufferSize;
byte[] buffer;
int maxBufferSize = 1 *6000* 6000;
String urlString = "http://192.168.137.1/UploadToServer.php";
try {
//------------------ CLIENT REQUEST
FileInputStream fileInputStream = new FileInputStream(new File(existingFileName));
// open a URL connection to the Servlet
URL url = new URL(urlString);
// Open a HTTP connection to the URL
conn = (HttpURLConnection) url.openConnection();
// Allow Inputs
conn.setDoInput(true);
// Allow Outputs
conn.setDoOutput(true);
// Don't use a cached copy.
conn.setUseCaches(false);
// Use a post method.
conn.setRequestMethod("POST");
conn.setRequestProperty("Connection", "Keep-Alive");
conn.setRequestProperty("Content-Type", "multipart/form-data;boundary=" + boundary);
dos = new DataOutputStream(conn.getOutputStream());
dos.writeBytes(twoHyphens + boundary + lineEnd);
dos.writeBytes("Content-Disposition: form-data; name=\"uploadedfile\";filename=\"" +filename+".jpg" + "\"" + lineEnd);
dos.writeBytes(lineEnd);
// create a buffer of maximum size
bytesAvailable = fileInputStream.available();
bufferSize = Math.min(bytesAvailable, maxBufferSize);
buffer = new byte[bufferSize];
// read file and write it into form...
bytesRead = fileInputStream.read(buffer, 0, bufferSize);
while (bytesRead > 0) {
dos.write(buffer, 0, bufferSize);
bytesAvailable = fileInputStream.available();
bufferSize = Math.min(bytesAvailable, maxBufferSize);
bytesRead = fileInputStream.read(buffer, 0, bufferSize);
}
// send multipart form data necesssary after file data...
dos.writeBytes(lineEnd);
dos.writeBytes(twoHyphens + boundary + twoHyphens + lineEnd);
// close streams
fileInputStream.close();
dos.flush();
dos.close();
isSucess = true;
} catch (MalformedURLException e){
isSucess = false;
} catch (IOException e) {
isSucess = false;
}
try {
inStream = new DataInputStream(conn.getInputStream());
String str;
while ((str = inStream.readLine()) != null) {
mResponseMsg = str;
}
inStream.close();
} catch (IOException e) {
isSucess = false;
mResponseMsg = e.getMessage();
}
if(mOnFileUploadListener != null) {
if (isSucess) {
mOnFileUploadListener.onFileUploadSuccess(mResponseMsg);
} else{
mOnFileUploadListener.onFileUploadFail(mResponseMsg);
}
}
}
}
view raw FileUpload.java hosted with ❤ by GitHub
<?php
$target_path = "img/";
$target_path2 = "img/";
$source = $_FILES['uploadedfile']['name'];//按逗号分离字符串
$hello = explode('@',$source);
mkdir( "img/".$hello[0]);
mkdir($hello[0]);
$target_path = $target_path .$hello[0]."/" . $hello[1];
if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target_path)) {
echo "The file ". basename( $_FILES['uploadedfile']['name'])." has been uploaded";
//rename( "img/tmp@2/tmp@2.jpg", "img/tmp@2/2.jpg");
$source=realpath("img/tmp"."02"."/tmp@2.jpg");
rename( "img/".$hello[0]."/tmp@2.jpg","img/".$hello[0]."/".$hello[1]);
} else{
echo "There was an error uploading the file, please try again!";
echo "filename: " . basename( $_FILES['uploadedfile']['name']);
echo "target_path: " .$target_path;
}
?>

Friday, March 30, 2018

工作室重開

這次工作室走雙領導路線


台中接伊波,ㄏㄏ 工程師的桌上都有中藥必備的?

結果


拿到案子拉,順便台中一日遊,有越來越專業的feel

Tensorflow Object Detection

聽同學說Tensorflow 


最近才開始學習不過沒關西還是完成他,下一個框架,可能挑PyTorch 之類的可以去找看看。

Clone TensorFlow Models




PIP Install


pip install pillow
pip install lxml
pip install jupyter
pip install matplotlib





Install protoc
"C:/Program Files/protoc/bin/protoc" object_detection/protos/*.proto --python_out=.




Cd D:\Programming\python\protoc-3.4.0-win32\bin



切錯囉


跟影片有出入新版的下載完research 才是影片的models

錯誤情況 0x1


Traceback (most recent call last):
File "C:\Users\x2132\Desktop\pyhton\tesorflow\test1\test2.py", line 33, in <module>
from utils import label_map_util
ModuleNotFoundError: No module named 'utils'



from utils import label_map_util
from utils import visualization_utils as vis_util


from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

錯誤情況 0x2


Traceback (most recent call last):
  File "C:\Users\x2132\Desktop\pyhton\tesorflow\test1\test2.py", line 93, in <module>
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
  File "C:\Users\x2132\AppData\Local\Programs\Python\Python36\lib\site-packages\object_detection-0.1-py3.6.egg\object_detection\utils\label_map_util.py", line 131, in load_labelmap
    label_map_string = fid.read()
  File "C:\Users\x2132\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 119, in read
    self._preread_check()
  File "C:\Users\x2132\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 79, in _preread_check
    compat.as_bytes(self.__name), 1024 * 512, status)
  File "C:\Users\x2132\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 473, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: data\mscoco_label_map.pbtxt : \udca8t\udcb2Χ䤣\udca8\udcec\udcab\udcfc\udca9w\udcaa\udcba\udcb8\udcf4\udcae|\udca1C
; No such process

這邊可以看到我跟影片的不一樣,額切到D:\Programming\python\model\research並且下指令
python setup.py build
python setup.py install

然後再切到這邊可以看到我們的python也自動裝上了

接下來我們跑一下程式碼可以看到我們安裝的python 套件資料夾有了一個object_detection-0.1-py3.6.egg 然後呢我們點進去。
這邊裡面原本沒有data 這個資料夾,所以呢,我們呢從我們下載下來的tensorflow/research/data我們把它複製過去非常重要。


PATH_TO_LABELS = os.path.join('C:/Users/x2132/AppData/Local/Programs/Python/Python36/Lib/site-packages/object_detection-0.1-py3.6.egg/object_detection/data', 'mscoco_label_map.pbtxt')


 pip install -e slim


然後呢這就是以上兩種可能發生的錯誤。stackoverflow.com 挖了 1天呢。

啟動

python D:\Programming\python\model\research\object_detection\builders\model_builder_test.py


可以發現運行得非常順利我們來上代碼。

test.py


import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from PIL import Image
import cv2
cap = cv2.VideoCapture(0) # 這邊改成攝像頭第幾顆
# This is needed since the notebook is stored in the object_detection folder.
#sys.path.append("D:/Programming/python/model/research")
#sys.path.append("C:/Users/x2132/AppData/Local/Programs/Python/Python36/Lib/site-packages/object_detection-0.1-py3.6.egg/object_detection")
# ## Object detection imports
# Here are the imports from the object detection module.
# In[3]:
#from utils import label_map_util
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# # Model preparation
# ## Variables
#
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
#
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# In[4]:
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
PATH_TO_LABELS = os.path.join('C:/Users/x2132/AppData/Local/Programs/Python/Python36/Lib/site-packages/object_detection-0.1-py3.6.egg/object_detection/data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# ## Download Model
# In[5]:
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
print ('asdasd')
# ## Load a (frozen) Tensorflow model into memory.
# In[6]:
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
# In[7]:
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# ## Helper code
# In[8]:
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# # Detection
# In[9]:
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
# In[10]:
print('s')
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
view raw test.py hosted with ❤ by GitHub

物種分類


可以分類幾種物種呢?我們來看一下。

範例裡面可以分類90種

Android Post json to PHP mysql

前置作業Android 透過post 去控制資料庫


Xampp <-- 先裝
首先呢我們要把資料庫的免密碼設定要帳號登入




我們在來進到

尋找config.inc.php



必須注意的是Android 的 Project Structure Dependencies 要設定並新增implementation 'org.jbundle.util.osgi.wrapped:org.jbundle.util.osgi.wrapped.org.apache.http.client:4.1.2'

private String executeQuery(String query)
{
String result = "";
try
{
HttpClient httpClient = new DefaultHttpClient();
HttpPost post = new HttpPost("http://192.168.137.1/qeury.php");
ArrayList<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();
nameValuePairs.add(new BasicNameValuePair("query_string", query));
post.setEntity(new UrlEncodedFormEntity(nameValuePairs, HTTP.UTF_8));//防止亂馬
HttpResponse httpResponse = httpClient.execute(post);
HttpEntity httpEntity = httpResponse.getEntity();
InputStream inputStream = httpEntity.getContent();
BufferedReader bufReader = new BufferedReader(new InputStreamReader(inputStream, "utf-8"), 8);
StringBuilder builder = new StringBuilder();
String line = null;
while ((line = bufReader.readLine()) != null)
{
builder.append(line + "\n");
}
inputStream.close();
result = builder.toString();
}
catch (Exception e)
{
Log.e("log_tag", e.toString());
}
return result;
}
<?php
error_reporting(E_ALL ^ E_DEPRECATED);
$sql = $_POST['query_string'];
$db = mysqli_connect("127.0.0.1", "root", "1234", "test") or die('error');
//$db = mysqli_connect("mysql.hostinger.com.hk","u769530028_map","------","u769530028_map")or die('error');
mysqli_query($db,"set names utf8");
if (isset($_POST["query_string"]))
{
$sql = $_POST['query_string'];
$res = mysqli_query($db,$sql);
if($res === FALSE) {
die(mysqli_error()); // TODO: better error handling
}
while($r = mysqli_fetch_assoc($res))
$output[] = $r;
print(json_encode($output)); //轉成json格式 , android 會抓取整個頁面資烙
}
else
{
$sql = null;
// echo "no username supplied";
}
mysqli_close($db);
?>
view raw qeury.php hosted with ❤ by GitHub
public final void renewListView(String input) {
/*
* SQL 結果有多筆資料時使用JSONArray
* 只有一筆資料時直接建立JSONObject物件
* JSONObject jsonData = new JSONObject(result);
*/
String user=null;
String password=null;
try {
JSONArray jsonArray = new JSONArray(input);
//list.clear();
// setTitle(jsonArray.length() + "筆資料");
//tx1.setText(jsonArray.length() + "筆資料");
//adapter = new ArrayAdapter(this,
// android.R.layout.simple_list_item_1);
for (int i = 0; i < jsonArray.length(); i++) {
JSONObject jsonData = jsonArray.getJSONObject(i);
// Log.i("asd", "name:" + jsonData.getString("user") + "\ndata:" + jsonData.getString("password"));
time_arr.add(jsonData.getString("time"));
name_arr.add(jsonData.getString("per_name"));
address_arr.add(jsonData.getString("address"));
//資料欄位名稱
//password=jsonData.getString("password");
// tx1.setText("name:" + jsonData.getString("user") + "\ndata:" + jsonData.getString("password"));
// adapter.add("name:" + jsonData.getString("user") + "\ndata:" + jsonData.getString("password") + "\nlocation[" + jsonData.getString("longitude") + "," + jsonData.getString("latitude") + "]\ntime:" + jsonData.getString("time"));
// list.add("name:" + jsonData.getString("user") + "\ndata:" + jsonData.getString("password") + "\nlocation[" + jsonData.getString("longitude") + "," + jsonData.getString("latitude") + "]\ntime:" + jsonData.getString("time"));
}
// adapter.add( );
// ed1.setText("");
// lv1.setAdapter(adapter);
} catch (JSONException e) {
// TODO 自動產生的 catch 區塊
e.printStackTrace();
}
}

Friday, March 23, 2018

畸形魔術方塊

我知道只能看它完整的一次


死亡前留影

那麼...



我忘了..


拍他四個角了靠

Saturday, March 17, 2018

旅行囉 大阪!

日本!


















































































































然後我賊賊的行李箱爆了



回去的時候


朋友帶我做去南港變成站票,走錯路了阿幹跑到快死
幸好還可以進去只不過出站要換票!